
OPTIMIZATION STRATEGIES FOR THE VULNERABILITY
ANALYSIS OF THE ELECTRIC POWER GRID ∗

ALI PINAR† , JUAN MEZA‡ , VAIBHAV DONDE§ , AND BERNARD LESIEUTRE¶

Abstract. Identifying small groups of lines, whose removal would cause a severe blackout, is
critical for the secure operation of the electric power grid. We show how power grid vulnerability
analysis can be studied as a mixed integer nonlinear programming (minlp) problem. Our analysis
reveals a special structure in the formulation that can be exploited to avoid nonlinearity and ap-
proximate the original problem as a pure combinatorial problem. The key new observation behind
our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility
boundary of the equations that describe the flow of power in the network) and the Laplacian matrix
in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial
problem is known as the network inhibition problem, for which we present a mixed integer linear
programming formulation. Our experiments on benchmark power grids show that the reduced com-
binatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized
problems with more than 10,000 power lines.
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1. Introduction. Robust operation of a power grid requires anticipation of com-
ponent outages that could lead to dramatic blackouts. The current practice is to check
for single contingencies to ensure the system stays intact after a single line outage.
However, a small number of line outages (e.g., 3–5) can cause catastrophic blackouts,
as evidenced by the Northeast Blackout in August 2003. In this article, we consider
the power network vulnerability analysis problem, which aims to find small groups of
lines, whose loss can cause a severe blackout. Specifically, we pose the following two
related optimization problems: 1) compute the minimum number of line failures that
will cause a damage of at least a specified severity and 2) compute a combination of
a specified number of lines, whose loss will cause the maximum damage.

We consider the problem in a static sense by examining the relation between the
operating point, which describes the current generation and consumption at each node
in the network, and the feasibility boundary of the power flow equations. The severity
of the events we identify could be different when dynamics and cascading events are
considered. Our main focus here, therefore, is to identify simple events that can trigger
a severe blackout, not to analyze its consequences, which requires solving differential
algebraic equations with discrete variables. Cascading events start with a significant
disturbance that forces system elements to operate beyond their capabilities. For
this reason, we look for minimal changes in the network topology that push the
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current operating point significantly outside of the feasibility region of the power
flow equations. This problem statement leads to a bi-level optimization problem,
since we are looking for minimal changes in network topology that maximize the
distance between the current operating point and the new feasibility region. Moreover,
the problem combines nonlinearity due to the power flow equations, with discrete
variables, due to changes in the network topology.

In this article, we propose a mixed integer nonlinear programming (minlp) formu-
lation for the power network vulnerability analysis problem. To measure the severity
of the disturbance to the system, we use a load shedding mechanism, which opti-
mally decreases the generation and consumption in the system to restore feasibility.
We avoid solving nested optimization problems by replacing the inner optimization
problem that compute the distance between the current operating point and the new
feasibility region, with its Karush-Kuhn-Tucker conditions. Next, we analyze the
structure of a feasible solution to our minlp formulation to reveal a special structure
that can be exploited to reduce the problem to a pure combinatorial problem. We
show that at a feasible solution to our minlp formulation, the power network will be
divided into two groups: one with excess generation and one with excess load, and
the optimal load shedding strategy requires that in the load-rich region, we decrease
only the consumption and keep the generation as is. Similarly in the generation-rich
region, we decrease only the generation and keep the consumption as is. Moreover,
we prove that at least one line that connects these two regions works at its maxi-
mum capacity to transfer power from the generation-rich side to the other. This clear
combinatorial structure of a feasible solution means that an optimal solution seeks a
decomposition with maximum load/generation mismatch and minimum transmission
capability between the the two regions. This observation leads to our major result:
the original minlp problem can be reduced, after some realistic simplifications, to
a pure combinatorial problem, namely the network inhibition problem. With this
reduction, we directly seek the values of discrete variables in the formulation with-
out solving the nonlinear equations, simplifying the problem complexity both in a
theoretical and practical sense.

Identification of multiple contingencies has recently drawn much interest both
from the optimization and power systems communities. Salmeron, Wood, and Baldick
[25] employed a linearized power flow model and used a bilevel optimization framework
along with mixed-integer programming to analyze the security of the electric grid. The
critical elements of the grid were identified by maximizing the long-term disruption in
the power system operation. The bilevel optimization framework has also been used
by Arroyo and Galiana [18]. In all of these formulations the optimization framework
appears promising for such types of problems where the critical system elements
that make the system vulnerable to failures must be identified. Donde et al. [12],
proposed a method that connected the feasibility boundary of power flow equations
with spectral graph theory, when voltages are fixed at their nominal values, and only
active power flow constraints are considered. Later, Donde et al. [11] extended
their approach to include reactive power and proposed a mixed integer nonlinear
programming formulation to identify the most significant blackout that can be caused
by a specified number of lines or to identify the minimum number of lines to cause
a blackout of specified severance. More recently, Lesieutre et al. [19, 20] approached
this problem from a graph theoretical perspective, by looking for subgraphs in a
given graph that are loosely connected to the rest of the graph and have a significant
load/generation mismatch. Grijalva and Sauer [15,16] related topological cuts in the
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power network with the static collapse based on branch complex flows. He et. al. [17]
used a voltage stability margin index to identify weak locations in a power network.
Bienstock and Mattia used the direct current power flow model and mixed integer
linear programming to find the most cost-effective way to increase edge capacities
to avoid cascading outages for a given set of failure scenarios [3]. Oliviera et al.
have used similar models and techniques to study how to add power lines to improve
system resilience [21]. In addition to these largely static analyses, system dynamics for
cascading events has also drawn a lot of interest. In [4,6,8] Dobson et al. used a long-
term model of the grid to study how failure of a component affects other components
in the system, to reveal failure statistics consistent with those observed in the power
grid. The same authors have also studied probabilistic models with the aim to better
understand cascade propagation [5, 9, 10].

The remainder of this article is organized as follows. Section 2 reviews matrix
representations of graphs and the basics of spectral graph theory that are relevant
to this article. In Section 3, we present a minlp formulation for the power network
vulnerability analysis problem. The structure of a feasible solution to this problem
and how this structure can be exploited to reduce the minlp formulation to a pure
combinatorial problem are discussed in Section 4. We describe the network inhibition
problem and its integer programming formulation in Section 5. Section 6 presents our
experimental results, and we conclude with Section 7.

2. Graphs and matrices. Matrix representations of graphs have long been
used to apply algebraic techniques to analyze graphs. Here we review the node-arc
incidence matrix and the Laplacian matrix, as two of the commonly used representa-
tions for graphs. The node-arc incidence matrix of a graph is used in flow problems,
and we will use this representation to present power flow equations. The Laplacian
matrix for graphs on the other hand, underlies spectral graph theory, which can be
used to analyze the connectedness of graphs. Let G = (V,E) be a graph with n
vertices and m edges. We use (vi, vj) to denote an edge that goes from vertex vi to
vertex vj . The node-arc incidence matrix, A, of this graph is an m×n matrix, where
the j-th column of A represents the j-th vertex, vj , and the i-th row represents the
the i-th edge, ei, in G. Each row has only two nonzeros at the columns that represent
the end vertices of the respective edge. The entry is -1 or 1, depending on whether
the respective edge is directed from or to the corresponding vertex, respectively. For-
mally, we use aij to denote the matrix entry at the i-th row and the j-th column of
A, which is defined as follows.

aij =


−1 if ei = (vj , u) ∈ E

1 if ei = (u, vj) ∈ E

0 otherwise

The node-arc incidence matrix A of the graph in Fig. 2.1 is as follows.

A =



−1 1
−1 1

1 −1
−1 1
−1 1

−1 1
−1 1

−1 1
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Fig. 2.1. A sample directed graph

The Laplacian of a graph G = (V,E) is an n × n matrix, where each row and
column represents a vertex in the graph. The diagonal entry is equal to the degree of
the associated vertex. An off-diagonal entry is -1, if the associated vertices of the row
and column are connected in the graph, and 0 otherwise. Formally, let di denote the
degree of vertex vi, and let lij denote the entry of the Laplacian matrix at the i-th
row and the j-th column, which we define as follows.

lij =


di if i = j

−1 if (vi, vj) ∈ E or (vj , vi) ∈ E

0 otherwise

The Laplacian of the graph in Fig. 2.1 is

L =


2 −1 −1

−1 4 −1 −1 −1
−1 −1 3 −1

−1 2 −1
−1 −1 3 −1

−1 −1 2

 .

We note that L can also be defined as

L = AT A, (2.1)

where A is the node-arc incidence matrix of the graph. This property holds regardless
of the directions of edges in G. It is possible to add edge weights to the definition of
Laplacian of a graph. In this case, the diagonal entry becomes the sum of weights of
edges adjacent to the respective vertex, as opposed to the degree of this vertex, and
the negative of the edge weight replaces “-1” as the off-diagonal entries. In this case,
Eq. (2.1) can be rephrased as

Lw = AT DwA, (2.2)

where Dw is a diagonal matrix so that the i-th diagonal is the weight of edge ei, and
Lw is the weighted Laplacian. Observe that a zero diagonal entry on Dw corresponds
to removing a line from the graph.
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The Laplacian of a graph is the basic element of spectral graph theory. Let
λ0 ≤ λ1 ≤ . . . ≤ λn−1 be the eigenvalues of L. The Laplacian matrix is symmetric and
semi-definite, and thus all eigenvalues are real and nonnegative. It is easy to see that
λ0 = 0, since all rows and columns of L add up to zero, and thus the vector, e, whose
entries are all the same and nonzero, is a singular vector for L. The smallest nontrivial
eigenvalue λ1 is more interesting due to its applications. Fiedler called λ1 the algebraic
connectivity of G [13], as it provides a metric for the connectedness of a graph. If
the graph inherently involves two loosely coupled sub-graphs, then λ1 will be small.
Fiedler also proved that λ1 will decrease as we remove edges from the original graph,
and it will be zero when the graph is decoupled into two disconnected components. A
fundamental result in spectral graph theory generalizes this observation so that the
multiplicity of the eigenvalue 0 gives the number of connected components in G.

Lemma 2.1. Let L be the Laplacian of graph G, and let λ0 ≤ λ1 ≤ . . . ≤ λn−1

be its eigenvalues. If λi = 0 and λi+1 6= 0, then G has exactly i + 1 connected
components.

The multiplicity of eigenvalue 0 determines the number of connected components
in a graph, associated eigenvectors identify these connected components. For an
eigenvalue λi = 0, the corresponding eigenvector vi has the same value for all vertices
in a component, and a different value for each one of the i + 1 components. This
result underlies our analysis of the structure of an optimal solution in Section 4.2.3.

3. Problem formulation. Our focus in this work is to identify simple events
that can trigger a cascading event, not to analyze consequences of cascading. Cas-
cading events start with a significant disturbance to the system, and continue with
failures of other system components, as these components are pushed beyond their
capabilities, while the system is trying to avert a blackout. It will be the initial sig-
nificant disturbance that we seek in this work, and thus we focus on static power flow
analysis. Below, we first describe our power flow model and then describe how we
measure the significance of an event. Finally, we cast the power grid vulnerability
problem as a mixed integer nonlinear programming (minlp) problem. In [11], a simi-
lar formulation is presented for a full power flow model with active and reactive power
equations, and a slightly different load-shedding model.

3.1. Power system model. We consider a lossless power system network with
m buses (nodes) and n lines (edges). We assume the voltages at the buses are fixed,
and thus the dependence of real power injections at buses on the phase angle vari-
ables θ can be fully described by active power constraints, making the reactive power
constraints unnecessary. The power flowing through the lines can be expressed as

Pline = B sin(Aθ),

where Pline is a vector of power flows over the lines, B is a diagonal matrix whose
diagonal entries correspond to line admittances, A is a node-arc incidence matrix that
represents the power network, and sin(Aθ) denotes a vector whose i-th component
is sin((Aθ)i). A vector of power injections P is then obtained by adding the power
flowing out of the buses into the network.

AT B sin(Aθ)− P = 0, (3.1)

with Aθ taking values between −π/2 and π/2, as required for steady state stability.
Here, we will work with a given topology of the power grid and investigate the

endurance of the grid to changes in topology. To extend the power flow equations
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Fig. 3.1. Space of real power injections showing feasibility boundaries for various line statuses.

for changing topologies, we introduce binary-valued line parameters, γi that indicate
whether the ith line is in service. That is,

γi =
{

0 if the line is in service,
1 if the line is out of service.

For simplicity of notation, we define Γ = diag(1−γ) as a diagonal matrix, whose i-th
diagonal entry is 1−diag(γ)). The power flow model (3.1), now with line parameters,
can be expressed as

F (θ, P ) = AT BΓ sin(Aθ)− P = 0. (3.2)

Removing lines from the network narrows the feasibility region of solutions to
(3.2), as illustrated in Fig. 3.1. This figure shows the schematic view of (3.2) in P
space. When all lines under consideration are in service, the curve shown as a solid line
represents a feasibility boundary for the power flow constraints. In the normal case,
the system operating point lies inside the feasible region. When a line is removed
from service, the feasibility boundary comes closer to the operating point, making
the system more vulnerable to failure. Eventually, the removal of a line pushes the
boundary past the operating point (dotted-lined curve), making system operation
infeasible due to absence of a solution. This implies a blackout, and averting this
blackout requires changing the loads and generation in the system, and hence moving
the operating point P, which we discuss in the next section.

3.2. Measuring the severity of a blackout. Load shedding means cutting off
power supply to some loads when the demand becomes greater than the supply. While
its common use is for high energy-demand times, broken power lines create subregions
for which the demand cannot be met with the reduced transmission capability of the
grid, even though supply is available in other parts of the system. Here, we use
load shedding to minimally change load and generation to restore feasibility to the
system to avert a blackout. From a mathematical point, a blackout corresponds to the
current operating point, P , being outside of the feasibility region, and load shedding
corresponds to finding the closest point to P on the feasibility boundary, subject to
some engineering constraints. The vector Z, which moves the operating point P to
the feasibility boundary, describes how to restore feasibility with minimum changes in
loads, and the size of this vector can be used as an estimate of the size of a blackout.
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Suppose the nodes of the system are divided into two groups: generator nodes
Ng and load nodes N l. For simplicity of presentation, we will reorder all the vectors
and matrices so that generator nodes precede load nodes. Let ZT = ((Zg)T , (Zl)T )
be the vector that represents the change in power assignment to nodes, where Zg and
Zl denote changes in generations and loads, respectively. By convention, P l

i ≤ 0 for
all load nodes, and P g

i ≥ 0 for all generation nodes. This requires Zg
i ≤ 0 and Zl

i ≥ 0
for load shedding. An optimal load shedding strategy can be computed by solving
the following optimization problem.

min
θ,z

− eT Zg (3.3)

s.t. F (θ, P + Z) = 0 (3.4)

Pl ≤ P l + Zl ≤ 0 (3.5)
0 ≤ P g + Zg ≤ P g (3.6)
− π/2 ≤ Aθ ≤ π/2 (3.7)

Here, (3.4) corresponds to power flow equations. Constraints (3.5) and (3.6) guar-
antee that load and generation do not increase and remain as load and generation,
respectively. The last constraint (3.7) ensures steady state stability. Since we assume
a lossless system, the decrease in generation should match the decrease in consump-
tion (i.e., eT Zg = −eT Zl), thus it is sufficient to look at only one of Zg and Zl to
measure the total volume of load shed. Recall that Zg variables correspond to how
much the generation will be cut, therefore they are negative, and thus we have the
minus sign in the objective function, (3.3).

The Lagrangian L corresponding to (3.3)–(3.7) is

L = −eT Zg + λT F (θ, P + Z) + µT
1 (−Zl) + µT

2 (P l + Zl) + µT
3 (−P g − Zg)

+ µT
4 (Zg) + µT

5 (−Aθ − π/2) + µT
6 (Aθ − π/2) (3.8)

where µ1, . . . , µ6, and λ are vectors of Lagrange multipliers. Karush-Kuhn-Tucker
(KKT) conditions for the problem in (3.3)–(3.7) are as follows.(

−e
0

)
+ λT ∂F

∂Z
+

(
µ4 − µ3

µ2 − µ1

)
= 0 (3.9)

λT ∂F

∂θ
+ AT (µ6 − µ5) = 0 (3.10)

µ1.(−Zl) = 0 (3.11)
µ2.(P l + Zl) = 0 (3.12)

µ3.(−P g − Zg) = 0 (3.13)
µ4.Z

g = 0 (3.14)
µ5.(−π/2−Aθ) = 0 (3.15)

µ6.(Aθ − π/2) = 0 (3.16)
µ1, . . . , µ6 ≥ 0 (3.17)

The notation “.” in (3.11)–(3.16) is used to indicate component-wise multiplication
of associated vectors. (3.9) and (3.10) correspond to the partial derivatives of L with
respect to Z and θ, respectively, and equations (3.11)–(3.16) correspond to inequality



8 Pinar, Meza, Donde, and Lesieutre

constrainsts (3.5)–(3.7). Optimal solutions to problem (3.3)–(3.7) satisfy the KKT
conditions (3.9)–(3.17). Thus the vector Z that provides the best load shedding solu-
tion is obtained by solving equations (3.4) and (3.9)–(3.16), while honoring inequalities
(3.5)–(3.7) and (3.17).

3.3. Power network vulnerability analysis problem as a MINLP. The
power network vulnerability analysis problem can be described as the following minlp
problem.

min
θ,γ,z

eT γ (3.18)

s.t. AT BΓ sin(Aθ)− (P + Z) = 0 (3.19)
− π/2 ≤ AΓθ ≤ π/2 (3.20)

Pl ≤ P l + Zl ≤ 0 (3.21)
0 ≤ P g + Zg ≤ Pg (3.22)

− eT Zg ≥ S (3.23)(
−e
0

)
− λ +

(
µ4 − µ3

µ2 − µ1

)
= 0 (3.24)

Jλ + AT Γ(µ6 − µ5) = 0 (3.25)

µ1.(−Zl) = 0 (3.26)

µ2.(P l + Zl) = 0 (3.27)
µ3.(−P g − Zg) = 0 (3.28)
µ4.Z

g = 0 (3.29)
µ5.(π/2 + AΓθ) = 0 (3.30)
µ6.(AΓθ − π/2) = 0 (3.31)
µ1, . . . , µ6 ≥ 0 (3.32)
γi ∈ {0, 1} for i = 1, 2, . . . ,m (3.33)

Here, (3.19) and (3.20) guarantee that there is a feasible solution to the power flow
equations at P +Z, and (3.23) enforces that the resulting blackout is no smaller than a
specified severity, S. Inequalities (3.21) and (3.22) are the load shedding constraints,
and (3.24)–(3.32) correspond to the KKT conditions, so that Z satisfies the necessary
conditions for an optimal solution for the load shedding problem. In these equations,
we have substituted ∂F

∂Z = I, and J = ∂F
∂θ . Finally, (3.33) correspond to discrete line

parameters, which indicate whether a line is cut (γi = 1) or active (γi = 0).
In this formulation, we are looking for the minimum number of lines to cut that

will cause a disturbance no smaller than a specified severity. By switching the roles
of the objective function (3.18) and the severity constraint (3.23), we can seek the
maximum disturbance that can be created by cutting no more than a specified number
of lines.

Our formulation reduces the problem to a minlp problem. While recent efforts
address solution strategies, minlp problems are inherently hard to solve. Next, we
will analyze the structure of an optimal solution to the problem (3.18)–(3.33) to
approximate it as a pure combinatorial problem, with a lower complexity, both in
theory and in practice.
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4. Reduction to a combinatorial problem. In this section, we analyze the
structure of a feasible solution to our minlp formulation to reveal a special combina-
torial structure that can be exploited to approximate our minlp formulation with a
pure combinatorial problem. Our reduction enables us to directly seek the values of
binary variables in the problem, without solving the nonlinear equations.

4.1. Structure of the Jacobian of the power flow equations. The Jaco-
bian, J , of power flow equations in (3.2) with respect to θ is

J =
∂F

∂θ
= AT BΓdiag(cos(Aθ))A, (4.1)

where diag(cos(Aθ)) and Γ are diagonal matrices whose i-th entries are equal to
cos((Aθ)i) and 1 − γi, respectively. Observe that B, Γ, and diag(cos(Aθ)) are all
diagonal matrices with nonnegative diagonal entries, since γ is a vector of binary
variables and the angular differences represented by Aθ are in the [−π/2, π/2] range.
Thus the Jacobian is identical in structure to a weighted Laplacian in (2.2).

When the diagonal entries in BΓdiag(cos(Aθ)) are all nonzero, J has only a single
zero eigenvalue, which means the network under consideration is initially connected.
It is worth noting that when the power flow equation for a reference bus is removed
from (3.2), along with its variable θ, the resulting reduced order Jacobian does not
have a zero eigenvalue, and is singular only when the operating point lies on the
feasibility boundary [2]. We preserve the network structure by retaining the reference
bus in order to be able to draw direct analogies with spectral graph theory. In our
formulation, the Jacobian, J , is always singular with a single, trivial zero eigenvalue
and the corresponding eigenvector e = [1, 1, . . . , 1]T .

Recall from Section 2 that removal of an edge appears in the weighted Laplacian
as a zero weight assignment to this edge. In the Jacobian, J in (4.1), this happens
when γi = 1, which corresponds to removal of a line from the network, or when the
angular difference for a line is ∓π/2, which corresponds to capacity of a line being fully
utilized. The multiplicity of eigenvalue zero is greater than one when the operating
point lies on the feasibility boundary. From spectral graph theory, we know that
a zero eigenvalue of J with multiplicity greater than one means that the graph is
fragmented into subgraphs, and further, the nodes in each subgraph can be discerned
from the eigenvectors corresponding to the zero eigenvalue, as discussed in Section 2.

The power flow Jacobian, J , is analogous to the residual graph for flow problems
in graph theory, which represents the incremental transmission capability of the net-
work. In a residual graph, edge capacities correspond to unused edge capacities, and
the incremental transmission capability of the system is measured by the total flow
capacity from the source to the terminal in the residual graph. At an optimal solution
(i.e. the maximum flow), the source and the terminal are disconnected in the residual
graph, corresponding to zero incremental transmission capability. In power systems,
the flow between two nodes is determined by the sine of the angular difference between
the two nodes, thus the cosine of this angular difference can be viewed as the residual
capacity of this line. When the operating point is on the boundary of feasibility, the
incremental transmission capability of the system will cease, which is reflected by the
multiplicity of the zero eigenvalue being more than 1. By Lemma 2.1, the system is
divided into at least two subgroups that are connected by either saturated lines with
angular difference at ∓π/2 or removed lines due to the γ variables.

4.2. Structure of a feasible solution. An analysis of the Lagrangian multi-
pliers sheds light onto the structure of a solution for problem (3.18)–(3.33). We will
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show that the system is decomposed into a generation-rich region and a load-rich
region. Then, we will study the flow on the lines between these regions.

4.2.1. Decomposition into load and generation-rich regions. Let λ =
(λgT , λlT )T be partitioned into variables for generator and load nodes, so that we can
split (3.24) into two equations.

−e− λg + µ4 − µ3 = 0 (4.2)
0− λl + µ2 − µ1 = 0 (4.3)

Consider a generator vertex and the associated Lagrangian multiplier λg
i . If λg

i < −1
then by (4.2), the corresponding µ3 variable must be positive. This requires Zg

i +P g
i =

0 by (3.28), which means the generation at this node will be zero after load shedding.
If λg

i = −1, then the corresponding µ3 and µ4 variables must be equal by (4.2). This
is only possible when they are both zero, since µ3 and µ4 correspond to lower and
upper bounds on P g + Zg. In this case, neither bound is binding and the generation
after load shedding is anything in the range [0, P g

i ]. Finally, if λg
i > −1 then by (4.2),

the corresponding µ4 variable must be positive. This requires Zg
i = 0 by (3.28), which

means that there will be no decrease in the generation at this node.
We can do a similar analysis for the load nodes. Consider a load vertex and the

associated Lagrangian multiplier λl
i. If λl

i > 0 then by (4.3), the corresponding µ2

variable must be positive. This requires Zl
i + P l

i = 0 by (3.27), which means the load
at this node will be zero after load shedding. If λl

i = 0, then the corresponding µ1

and µ2 variables must be equal by (4.3). This is only possible when they are both
zero, since µ1 and µ2 correspond to lower and upper bounds on P l + Zl. In this case,
neither bound is binding and the load after shedding is anything in the range [0, P l

i ].
Finally, if λl

i < 0 then by (4.3), the corresponding µ1 variable must be positive. This
requires Zl

i = 0 by (3.28), which means that there will be no decrease in the load at
this node.

This yields the following load-shedding model. For generation nodes,

Zg
i = 0 if λi > −1, (4.4)

0 ≤ Zg + P g ≤ P g if λi = −1, (4.5)
Zg

i = −P g
i if λi < −1. (4.6)

And for loads

Zl
i = 0 if λi < 0, (4.7)

P l ≤ Zl + P l ≤ 0 if λi = 0, (4.8)

Zl
i = −P l

i if λi > 0. (4.9)

Observe that not all λi ≥ 0, since that requires Zg = 0 for all generation nodes, which
contradicts the blackout severity constraint, −etZg ≥ S. Similarly, not all λi < 0,
since that requires Zl = 0 for all loads. Since we have a lossless system, Zl = 0
implies, Zg = 0, which again contradicts the blackout severity constraint.

Based on these observations, we can decompose the system into two regions based
on their Lagrangian multipliers. Let the first group be composed of nodes for which
λi < 0, and the second group be composed of the remainder for which λi ≥ 0. For the
first region (λi < 0), we know by (4.7) that the loads cannot be decreased while the
generation can be decreased as necessary. For the second region (λi ≥ 0), we know by
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(4.4) that the generation cannot be decreased, whereas the loads can be decreased as
necessary. Thus the Lagrangian multipliers give a decomposition of the system into
two regions: a generation-rich region, defined by λi < 0, where only the generation
can be decreased and loads remain the same, and load-rich region, defined by λi ≥ 0,
where only the loads can be decreased and the generation remains the same.

This shows that the λ vector decomposes the system into a generation-rich part
P1 and a load-rich part P2. The reason for the blackout is the failure to transmit
power from the generation-rich part to the load-rich part, and moreover, the best way
to restore the system to feasibility is to decrease the generation in the generation-rich
part and the load in the load-rich part.

4.2.2. Flow between the two regions. In the previous section, we showed
that at a feasible solution to (3.18)–(3.33), the system will be decomposed into a
generation-rich region, P1 and a load-rich region, P2. Now, we study the flow between
these two regions by investigating (3.25), and show that there is at least one line
between the two regions that uses its maximum capacity to carry power from the
generation-rich side to the load-rich side.

For simplicity of presentation, we assume all vectors are permuted so that the
nodes in the generation-rich region are ordered before those in the load-rich region,
and the same permutation is applied to matrices symmetrically. Let λ = (λ1T

, λ2T )T ,
so that λ1 corresponds to the nodes in the generation-rich region (λ1

i < 0), and
λ2 corresponds to the nodes in the load-rich region (λ2

i ≥ 0). Then (3.25) can be
rewritten as (

J11 J12

J21 J22

) (
λ1

λ2

)
+ AT Γ(µ6 − µ5) = 0, (4.10)

where J11, J12, J21, and J22 are submatrices of J that conform with (λ1T
, λ2T )T .

Recall that J is symmetric and diagonally dominant, with the only positive entries on
the diagonals, and the sum of absolute values of the remaining entries on a column/row
is equal to the diagonal entry. Thus, eT J11λ

1 ≤ 0, where the equality is satisfied
only when J21 = M0, where we use M0 to denote a matrix of all zeros. Similarly,
eT J22λ

2 ≥ 0, where the equality is satisfied only when J12 = M0. Observe that J12

and J21 matrices correspond to the lines between the two regions, and their nonzeros
correspond to lines that are neither cut (γi = 1) nor saturated due to the angular
difference being ∓π/2. Therefore, J12 = J21 = 0 means that all lines

In general, when J12 = JT
21 6= 0, which means there may be unsaturated lines

between the two regions. In this case,

eT (J11, J12)(λ1T
, λ2T

)T < 0,

since eT J11λ
1 < 0, J12 is composed of all negative entries, and λ2 is composed of all

nonnegative entries. For similar reasons,

eT (J21, J22)(λ1T
, λ2T

)T > 0.

This means for (4.10) to be satisfied, AT Γ(µ6 − µ5) 6= 0. The Lagrangian multipliers
µ5 and µ6 are for lower and upper bounds on Aθ, and thus only one can be nonzero,
when the anguler difference at the corresponding line is ∓π/2. Thus there must be
at least one active line (γi = 0) that is saturated. Recall that each column of AT has
one “-1” and one “1”, and thus the saturated line that is internal in one of the regions
will not help, and we need a saturated line that goes between the two regions.
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Assume this line is directed from P1 to P2, that is the column in AT for this line
has its -1, in the generation-rich part, and its 1 in the load-rich part. This implies that
the corresponding entry in µ5 needs to be positive, since we need a positive addition
to the first part. The Lagrangian multiplier µ5 can be positive only when the angular
difference for this line is −π/2, which means the power flows from the generation-rich
side P1 to the load-rich side P2. Symmetrically, if the line is directed from P2 to P1

in matrix AT , then µ6 needs to be positive, which means angular difference for this
line is π/2, and thus power flows again from the generation-rich side to the load-rich
side. This observation does not hold for each line on the boundary, but we know that
it holds for at least one boundary line.

4.2.3. Analysis of a special case. In this section we analyze a special case
where the Lagrangian multipliers for the constraints on angular differences are set to
be zero, i.e., µ5 = µ6 = 0. This corresponds to a degenerate case, and our goal here
is to better disclose the combinatorial structure in a solution to (3.18)–(3.33). While
our results in the remainder of the paper do not rely on the results in this section, we
believe what we present can play an important enabling role for future studies on the
topic.

The Lagrangian multipliers µ5 and µ6 being zero reduces (3.25) to Jλ = 0. As
shown in Section 4.2.1, all entries of λ cannot be the same, and some of them need to
be nonnegative, and some need to be negative. This excludes the λ = (1, 1, . . . , 1)T ,
solution, thus we need another singular vector for J . By our discussions in Section 2,
we know that for J to have another singular vector the graph corresponding to J
should be decomposed into multiple components, which is possible due to broken and
saturated lines. This means in a solution to our problem, the power grid will be
decomposed into at least two groups, so that the edges connecting these groups are
either cut (γi = 1), or saturated (the angular difference is ∓π/2). For brevity, we
assume there are exactly two groups in the system.

The entries in the associated singular vector λ will reflect this decomposition of the
grid and each λi will be assigned one of the two real numbers, c1 and c2. Let c1 < c2,
and let P1 be the set of nodes for which λi = c1 and P2 be the set of remaining nodes,
for which λi = c2. In Section 4.2.1 we showed that there must be some generators,
for which λg

i ≤ −1, and there must be some loads, for which λl
i ≥ 0. Assume c1 =−1

and c2 = 0. Note that this choice does not constrain the other variables, and any
other solution can only be as good as a solution with c1 = −1 and c2 = 0. The load
shedding model in (4.4)–(4.9) still applies, which means that a feasible solution does
not decrease the loads on the P1 nodes, and does not decrease the generation on the
P2 nodes. This shows that the λ vector decomposes the system into a generation-rich
part P1 and a load-rich part P2, as discussed before. The reason for the blackout is the
failure to transmit power from the generation-rich part to the load-rich part, since all
lines between these two parts are either cut, or already operating at their maximum
limits. Moreover, the best way to restore the system to feasibility is to decrease the
generation in the generation-rich part, and the load in the load rich part.

4.3. Power network vulnerability analysis as a combinatorial problem.
While the problem (3.18)–(3.33) provides an accurate mathematical formulation for
vulnerability analysis, its solution provides more than a small set of critical lines. A
solution to the problem (3.18)–(3.33) computes how load can be shed optimally, phase
angles at nodes after load shedding, and a decomposition of the system into load and
generation-rich regions. What we really need is only the set of broken lines, i.e, the
vector γ. We need to know the norm of the Z vector is above a specified severity
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threshold, but we don’t need to know its entries individually. Note that once γ is
known, computing the remaining information in the formulation only requires solving
a system of nonlinear equations.

Optimal load shedding requires decreasing the loads in the load-rich region, while
keeping the generation as is. Symetrically, we need to cut the generation in the
generation-rich region, and retain the loads. The total volume to be shed is defined
by the load-generation mismatch in a part, and the total flow on the active boundary
edges between the two parts. In this model, the blackout severity is a function of
the decomposition of the system and depends on the load generation mismatch in
the two regions. Therefore, constraint (3.23) can be satisfied with the right choice of
partitioning. Let T denote the total power being transmitted from one part to another
in the remaining network after lines are removed. Then −eT Zg can be computed as

(
∑
λi<0

Pi)− T. (4.11)

Here, the summation computes the excess generation in P1, and since we cannot cut
the loads in this part, the generation must be reduced to match the load after the
lines leaving this part are loaded maximally.

We know that at a feasible solution, the power grid will be decomposed into two
parts as a load-rich region and a generation-rich region. What (4.11) shows is that
an optimal solution seeks for a decomposition that maximizes the generation/load
mismatch and minimizes the potential power transmission between the two regions,
which reveals a clear combinatorial structure in the problem. This raises an interesting
question of whether we can solve problem (3.18)–(3.33), by directly looking for such
a decomposition. Below, we discuss how such a decomposition can be used to find
an approximation to the minlp formulation and why this is a good approximation.
The big gain here is that the decomposition problem can be formulated as a milp,
as opposed to a minlp . It should be noted that our reduction is more than merely
solving the discrete portion of a minlp problem in a decomposition algorithm such
Benders decomposition or outer approximation. Our formulation foresees the change
in the nonlinear part, and directly seeks values of discrete variables in an optimal
solution to the minlp, without explicitly solving the nonlinear part.

For a formal definition, let Lines(P1, P2) denote the set of lines between parts P1

and P2, Cap(E) be the total capacity of lines in set E, and L(P1) and G(P1) be the
total load and generation in part P1, respectively. We define the network vulnerability
analysis problem as follows.

Let G = (V,E) be a graph with V as the set of nodes (buses), and E as the set of
edges (lines), and let S be a specified severity threshold. Find a minimum cardinality
subset of edges C ⊆ E, so that there exists a partitioning of nodes V into P1 and
P2 = V \ P1, so that

G(P1)− L(P1)− Cap(Lines(P1, P2) \ C)| ≥ S. (4.12)

This problem can be solved as the network inhibition problem in graph theory [22],
which we will address in the next section. There are two reasons for why the com-
binatorial model is an approximation, and not an exact model. Both reasons cause
underestimation of the severity of a blackout, and thus a solution to the combinatorial
problem will yield a feasible solution to (3.18)–(3.33), but not necessarily an optimal
one.
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Firstly, we know that an optimal solution involves a decomposition of the system,
where only the generation (load) will be shed in the generation (load)-rich region,
but we do not know if this holds for an arbitrary decomposition. That is in an
optimal solution, it is sufficient to shed the load or generation to merely match the
other, but this is not necessarily the case for all decompositions, as we might have
to lower the generation even in the generation rich region to restore feasibility. This
will cause underestimating the blackout severity, as our combinatorial model does not
fully capture the complexity of power flow equations. However, this is not as serious a
drawback, since we are only looking for significant blackouts and will cut a significant
portion of the generation and loads. This translates to a large feasible space for the
minimal load shedding problem, within which it is possible to find an instance where
only cutting the loads or generation is sufficient.

The second reason why the combinatorial model is not exact is that the total flow
between the two parts may be less than the cumulative capacities of the connecting
edges. We know that there will be at least one line that uses its maximum capacity to
transfer power from the generation-rich side to the load-rich side. And in our analysis
of a special case in Section 4.2.3, we showed that all lines between the two parts
will be saturated. While the cumulative capacity of lines is not always utilized for a
given decomposition of the system, the particular decomposition we choose creates a
load/generation mismatch, and minimizing the total volume of load shedding requires
maximizing the total flow from the generation-rich side to the load-rich side. Thus
the goal of load shedding can be considered as maximizing the flow between the two
regions. Therefore, what we use as an approximation is an upper bound on the value
of a maximization problem that is implicit in the KKT conditions in (3.18)–(3.33),
and thus a good approximation.

5. Solving the network inhibition problem. In the network inhibition prob-
lem, we aim to find the best way to attack a network to minimize its transmission
capability. In graph theoretical terms, the network inhibition problem tries to find
the most cost-efficient subset of lines, removal of which minimizes the maximum flow
on the remaining network. The network inhibition problem naturally involves the
maximum flow problem as a subproblem. Below, we first discuss flow networks, and
define the network inhibition problem. Then we provide an integer programming for-
mulation for this problem, and discuss how the power network vulnerability analysis
problem can be posed as the network inhibition problem.

5.1. Flow graphs and the maximum flow problem. A flow network G =
(V,E) is defined by a set of vertices V , a set of edges E, where each edge (u, v) has
a nonnegative capacity c(u, v), and two special vertices: a source s and a terminal t.
A flow in G is a real valued function, f : E → R. We use f(u, v) to refer to a flow
on the edge from vertex u to vertex v. Using a single source and a single terminal
vertex provides a standard form for the maximum flow problem, and even if there are
multiple vertices with production, a single source vertex, s, is used, which is connected
to all other vertices with production, and the capacity of the connecting edge is equal
to the production on that node. Similarly, only a single terminal vertex, t, is used,
which is connected to all other vertices with consumption, and the capacity of the
connecting edge is equal to the consumption on that node. We say a flow is feasible if
it respects conservation of flow and the capacity constraints on edges. Conservation
of flow requires that the total flow into a node is equal to total flow out of that node
except for the source and terminal vertices. The value of a flow is defined by the total
flow leaving the source, and the maximum flow problem aims to find a feasible flow
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Fig. 5.1. Maximum-flow and minimum cut on a flow graph. Numbers on the edges represent
flow assignment/capacity. The dashed line represents the cut.

with maximum value.
A closely related concept to maximum flow is the minimum cut. A cut in a

flow graph is defined by a bipartitioning of vertices V into S and T = V \ S, so that
s ∈ S and t ∈ T . We say an edge is on the cut if one of its end vertices is in S and
the other is in T . The capacity of a cut is defined as the sum of capacities of the
edges on the cut, and a minimum cut is one with minimum capacity among all the
cuts. It is easy to see that the capacity of any cut is an upper bound on the value
of a maximum flow, since the edges on the cut block all paths from the source to the
terminal, and thus the total flow cannot exceed their cumulative capacity. As one of
the earliest and fundamental results in combinatorial algorithms, Ford and Fulkerson
proved that the capacity of a minimum cut is equal to the value of a maximum flow.
This duality between maximum flow and minimum cut underlies many algorithms for
flow problems and in this work we compute the value of a maximum flow by finding
the capacity of a minimum cut. A more detailed discussion on flow algorithms along
with proofs of this duality can be found in [7, 26].

An example for the maximum flow minimum cut property is illustrated in Fig. 5.1.
In this figure, the numbers on edges represent the flow assignment and the capacity
of the edge. For instance, the edge from v1 to v3 has a capacity of 9 units and uses 7
units of this capacity in the current flow assignment. The volume of a maximum flow
in this graph is 13 units, and the current flow assignment is optimal. The associated
minimum cut in this graph is S = {s, v1, v2, v3} and T = {v4, t} with capacity 13.

5.2. Network inhibition problem. In [22], Phillips defines the network inhi-
bition problem as follows. Each edge in the network has a destruction cost, and a
fixed budget is given to attack the network. A feasible attack removes a subset of the
edges, whose total destruction cost is no greater than the budget, and the network
inhibition problem is to find an attack that optimally reduces the value of a maximum
flow in the graph after the attack. The network inhibition problem has two objectives
and/or constraints: the cost of an attack and the resulting damage. Phillips’ formula-
tion, which we call the maximum damage version of the network inhibition problem,
constrains the budget of the attack and seeks to maximize the damage. Here, we work
on the minimum cost version of the problem, where we look for the most cost-effective
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attack, where the damage is no smaller that a specified bound.
The network inhibition problem is closely related to the maximum flow/minimum

cut problem. More specifically, the minimum cut problem is a special version of the
network inhibition problem, where the value of a maximum flow in the network after
the attack should be zero. In terms of complexity however, the network inhibition
problem is much harder. While maximum flow problems can be efficiently solved by
polynomial-time algorithms [14], the network inhibition problem is NP-complete [22].
Phillips provides a comprehensive study on the network inhibition problem [22]. Roy-
set and Wood [24] studied this problem as a bi-objective problem, and Pinar et al. [23]
studied the inhibiting bisection problem, where a graph decomposition with maximum
production/demand mismatch is sought.

5.3. MILP formulation for the network inhibition problem. A formula-
tion for the network inhibition problem requires measuring the value of a maximum
flow on the graph after the attack, which we do by finding a minimum cut. For clarity
of presentation, we first present an integer programming formulation of the minimum
cut problem and then extend this formulation for the network inhibition problem.

5.3.1. MILP formulation for the minimum cut problem. Let G = (V,E)
be a flow network with n vertices and m edges, and let A be the m × n node-arc
incidence matrix of this graph. We assume the first and last columns of A correspond
to the source and terminal vertices, respectively. We use ci to refer to the capacity of
the i-th line. We define a binary variable ρi for each vertex vi ∈ V , so that

ρi =
{

0 if vi ∈ S
1 if vi ∈ T

,

where S and T = V \ S denote the partitioning of V that defines the cut. We also
define a binary variable ωi for each edge, so that

ωi =
{

1 if ei is on the cut
0 otherwise

The minimum cut problem can then be formulated as follows.

min
ρ,ω

cT ω (5.1)

s.t. Aρ− ω ≤ 0 (5.2)
Aρ + ω ≥ 0 (5.3)
ρ1 = 0 (5.4)
ρn = 1; (5.5)
ρi ∈ {0, 1} for i = 1, 2, . . . , n (5.6)
ωi ∈ {0, 1} for i = 1, 2, . . . ,m (5.7)

Here, the objective function minimizes the cumulative capacity of the cut edges. Con-
straints (5.4) and (5.5) guarantee that s ∈ S and t ∈ T , respectively. Constraints (5.6)
and (5.7) guarantee that the ρ and ω are binary variables. Constraints (5.2) and (5.3)
are used to enforce any edge between parts S and T to be labeled as a cut edge. Con-
sider an edge ek that goes from vi to vj , for which we have the following constraints.

ρj − ρi − ωk ≤ 0 (5.8)
ρj − ρi + ωk ≥ 0 (5.9)
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We need to show that ωk = 1, if vi and vj are on different parts (ρi 6= ρj). If ρj = 1
and ρi = 0, (5.8) forces ωk to be ≥ 1. Symmetrically, if ρj = 0 and ρi = 1, it will
be (5.9) that forces ωk to be ≥ 1. When the two vertices are in the same part, i.e.,
ρi = ρj , ωk can be either zero or one. However, since the objective is to minimize cT ω,
when the edge is not on the cut, ωk will be at its minimum, zero. This analysis further
shows that, we do not need to impose ω variables to be binary explicitly. When edge
ek is on the cut, we need ωk ≥ 1, and when ek is an internal edge, ωk will be at
its minimum due to the objective function. In an optimal solution to (5.1)–(5.6), ω
variables naturally take binary values, when they are constrained to be in the [0, 1]
region. Therefore we can replace (5.7) with

0 ≤ ωi ≤ 1 for i = 1, 2, . . . ,m

5.3.2. MILP formulation for the network inhibition problem. Since the
network inhibition problem seeks to minimize the maximum flow/minimum cut of a
graph in a cost optimal way, we can use our formulation for the minimum cut as the
core of our formulation for the network inhibition problem. We start by defining a
binary variable di for each edge that defines whether a line is destroyed.

di =
{

1 if ei is destroyed
0 otherwise

Let p be a vector that indicates line-destruction costs. The minimum cost version
of the network inhibition problem can be formulated as a milp problem as follows.

min
ρ,ω

pT d (5.10)

s.t. cT ω ≤ S (5.11)
Aρ− (ω + d) ≤ 0 (5.12)
Aρ + (ω + d) ≥ 0 (5.13)
ρ1 = 0 (5.14)
ρn = 1; (5.15)
ρi ∈ {0, 1} for i = 1, 2, . . . , n (5.16)
di ∈ {0, 1} for i = 1, 2, . . . ,m (5.17)
ωi ∈ [0, 1] for i = 1, 2, . . . ,m (5.18)

Here, the objective corresponds to minimizing the cost of the attack, and the ω vector
identifies the cut edges on the remaining graph. While this cut is not necessarily the
minimum cut, it provides an upper bound on the maximum flow in the graph, which is
sufficient for our purposes. Inequality (5.11) guarantees the capacity of this cut, thus
the volume of a maximum flow, is no bigger than a specified threshold S. Equations
(5.12)–(5.15) ensure that the ω vector identifies the cut edges. The source and the
terminal vertices are on different parts of the cut due to (5.14) and (5.15), and for
each line ek = (vi, vj) in the graph we have the following two constraints.

ρj − ρi − ωk − dk ≤ 0 (5.19)
ρj − ρi + ωk + dk ≥ 0 (5.20)
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It suffices to show that ωk = 1, if vi and vj are on different parts (ρi 6= ρj) and the
edge is not destroyed (dk = 0). Note that we do not need to show that ωk = 0 for
other cases, since ωk > 0 redundantly increases the cT ω value, which we are trying to
keep small. In other words, the ω vector defines a valid cut in the graph, but it is not
necessarily minimal, and a subset of the edges it provides, might provide a valid cut.
If ρj = 0, ρi = 1, and di = 0, (5.19) forces ωk ≥ 1. Symmetrically, if ρj = 1, ρi = 0,
and di = 0, then it will be (5.20) that forces ωk to be ≥ 1. Also observe that when
di = 1, the two inequalities will be satisfied, regardless of ρi, ρj and ωk.

The formulation in (5.10)–(5.18) is the minimum cost version of the network
inhibition problem, where we look for the most cost-efficient way to cause a damage
of specified severity. We can easily switch the positions of the objection function and
the severity constraint (5.11) for the maximum damage version of the problem, where
we try to find an attack of specified cost that willgive the maximum damage.

5.4. Power grid vulnerability as a network inhibition problem. The com-
binatorial version of the vulnerability analysis problem of Section 4.3 can be posed as
the network inhibition problem. Observe that the severity constraint, which we stated
as the volume of load shed being above a threshold, S, can be rephrased as the re-
maining flow in the graph being below |G|−S, where |G| denotes the total generation
in the system. Here, we replace the severity threshold S of the power grid vulnerabil-
ity analysis with |G| − S for the network inhibition problem. The graph of a power
grid can be transformed to a flow graph by adding a source vertex s and a terminal
vertex t, and connecting each generator to the source with an edge whose capacity is
equal to the generation at that node and connecting each load to the terminal with
an edge whose capacity is equal to the consumption at that node. All other edges
that correspond to power lines retain their capacities. We define the destruction cost
of the source and terminal edges to be ∞, and all other edges to be 1, to guarantee
that the solution to the network inhibition only chooses actual power lines to cut.

A solution to the network inhibition problem identifies a bipartitioning of the
nodes into S and T , which correspond to generation-rich region P1 and load-rich
region P2, respectively. The cut edges potentially includes source edges that connect
s to generation nodes, terminal edges that connect t to terminal nodes, as well edges
that represent power lines. Observe that a source edge will be cut, if the respective
generator is in T , and similarly a terminal edge will be cut if the respective load is in S.
The capacity of the cut can then be expressed as L(P1)+G(P2)+Cap(Lines(P1, P2)\
C). Here L(P1) represents the total load in S and is equal to the cumulative capacity
of the terminal edges on the cut. Similarly, G(P2) represent the total generation in T
and is equal to cumulative capacity source edges on the cut. C is the set of cut edges
identified by the d vector, and Cap(Lines(P1, P2) \ C) is the total capacity of the
active edges on the cut that represent power lines. Constraint (5.11) then becomes

L(P1) + G(P2) + Cap(Lines(P1, P2) \ C) ≤ |G| − S

L(P1) + |G| −G(P1) + Cap(Lines(P1, P2) \ C) ≤ |G| − S

L(P1)−G(P1) + Cap(Lines(P1, P2) \ C) ≤ −S

−L(P1) + G(P1)− Cap(Lines(P1, P2) \ C) ≥ S,

which is the same as (4.12).

6. Experimental results. We present two sets of experiments to show that our
proposed techniques are accurate and practical. The first set of experiments show that
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Fig. 6.1. IEEE 30-bus system

the gap between our combinatorial approximation and the original minlp formulation
is small and rapidly closes as the severity of the blackout increases. In the second
set of experiments, we apply our integer programming formulation for the network
inhibition problem to a simplified model of the Western power grid with 13,374 nodes
and 16,520 lines to show the practicality of our simplified formulation.

For the first set of experiments, we used a slightly modified version of the IEEE
30 bus system [1] as described in [11], where the generator active power injections are
modified so that there is no natural power balance in the system, providing a better
test case for vulnerability analysis. This modified data set is presented in detail in [11],
and the IEEE 30 bus system is illustrated in Fig. 6.1.

In this system, the generation-rich lower subsystem (the shaded region in Fig. 6.1)
is connected to the load-rich upper subsytem with only 4 lines (lines 28, 29, 30, and
36). Failures among these lines can cause a blackout, as the remaining lines are not
sufficient to transfer power from the generation-rich subregion to the load-rich region.
In our experiments, we have looked at 5 different combinations of line failures, as
lines 28, 29, and 30, lines 28, 29, and 36, lines 28 and 29, lines 29 and 30, and
lines 29 and 36 are cut. To observe how the accuracy of our approximation changes
with blackout severity, we increased the generation at the generation-rich region in
the lower subsystem and load in the load rich region. For each of these test cases,
the excess generation and load were equally distributed among the generators and
load nodes in the respective regions. The results of our experiments are presented in
Fig. 6.2.

In Fig. 6.2, the horizontal axis correspond to the estimated size of a blackout,
which we compute by (4.12). The vertical axis correspond to the measured size of a
blackout, which we compute by solving the optimal load shedding problem in (3.18)–
(3.33). To solve the associated nonlinear optimization problem, we used Matlab’s
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Fig. 6.2. Accuracy of our combinatorial approximation to the minlp formulation.

fmincon with default settings. Both axes are normalized with respect to the total
generation in the system. Each data point corresponds to an experiment with a
specified set of broken lines, and a generation/load assignment. Experiments with the
same set of broken lines are marked with the same sign. Ideally, all points should lie on
the main diagonal, which means the estimation is equal to the measurement. However,
this does not always hold, either due to the imperfectness of our approximation, or due
to the imperfectness of the nonlinear solver we use to solve the load shedding problem.
Note that both factors cause the measured value to be higher than the estimated value,
since our approximation is always an underestimation, and the solver is bound to find
local optima for our nonconvex optimization problem.

The results show that our approximation works effectively, especially for blackouts
with high severity. The first two sets of broken lines, leave only a single line between
the generation-rich and load-rich regions. By our analysis, we know that this line will
be saturated, and thus our combinatorial approximation will be exact. We can see
that the empirical results are consistent with our theoretical studies. The other three
cases leave two lines between the two regions. The results show that our combinatorial
model underestimates the severity of a blackout (sometimes even misses a blackout,
which correspond to the points on the vertical axis), but the gap between estimated
and measured values closes rapidly as the blackout severity increases. Note that we
are only interested in severe blackouts, and thus our combinatorial approximation is
accurate for our purposes.

In the second set of experiments, we applied our integer programming formulation
for the network inhibition problem to identify vulnerabilities of a simplified model of
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the Western states power grid with 13,374 nodes and 16,520 lines. We used PICO, a
massively parallel integer programming solver, developed by Phillips et al. at Sandia
National Laboratories, to solve the associated milpproblems. The results of our ex-
periments are presented in Fig.6.3. While PICO can be run in parallel, we performed
our experiments on a single processor. As seen in this figure severity increases with

Fig. 6.3. Results on a grid with 13,374 nodes and 16,520 edges, which is a simplified model for
the Western United States power grid

number of lines being cut. The solution times for these problems were only in the
order of tens of seconds on an Opteron 2.2 GHz processor with 4.4 GFlops/sec the-
oretical peak and 6 Gbytes of physical memory. The main conclusion, we can draw
from these experiments is that our reduction from the minlp formulation of the power
grid vulnerability analysis problem to the milp formulation of the network inhibition
problem grants practical solutions. The associated integer programming formulations
for the network inhibition problem can be applied for the vulnerability analysis of
real-world problems.

7. Conclusions and future work. We studied the problem of identifying small
groups of lines, whose removal would cause a severe blackout, which is critical for the
secure operation of the electric power grid. We first presented a mixed integer nonlin-
ear programming (minlp) formulation of the problem. Our analysis of this formulation
revealed a special combinatorial structure that we exploited to avoid nonlinearity and
approximate the original problem as a pure combinatorial problem. The key new
observation behind our analysis was the correspondence between the Jacobian ma-
trix (a representation of the feasibility boundary of the equations that describe the
flow of power in the network) and the Laplacian matrix in spectral graph theory (a
representation of the graph of the power grid). Our reduction allowed us to directly
seek values of discrete variables in an optimal solution to our minlp formulation,
without explicitly solving the nonlinear part, which simplifies the problem complexity
theoretically and practically. The reduced combinatorial problem is known as the net-
work inhibition problem, for which we presented a mixed integer linear programming
formulation. Our empirical studies showed that our combinatorial approximation is
accurate, especially as the blackout size increases, and we can solve the corresponding
integer programming problems even for tens of thousands of lines.
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This work leads to new research problems both for optimization and for power
systems communities. First, we have used a simplified model of power flow equations,
where the fixed the voltages and focused only at active power. Our formulation can be
easily extended to include reactive power, but our analysis of an optimal solution needs
to be revised. It remains to be seen if there exists a combinatorial structure when the
reactive power is also included in the analysis. Another interesting question is whether
it is possible to find tighter bounds for the flow between two regions. We believe
our current bound of cumulative sum of capacities of active lines can be improved
by careful analysis of power flow equations, which will be an interesting question,
especially for power systems experts. Finally, it would be interesting to include system
dynamics in vulnerability analysis, without solving differential algebraic equations.
Stochastic models might be useful in this context.

On the optimization front, solving the minlp formulation remains as a challenge.
Especially, using our discrete approximation within a decomposition method needs
to be investigated. Recall that our approximation is more than merely solving for
binary variables, where continuous variables for the nonlinear part are fixed. The
reduced problem can foresee changes in the nonlinear part, and directly seek values
of binary variables (i.e., the broken lines in this problem) in an optimal solution.
Our reduction can still be used to accelerate a decomposition algorithm. We ex-
pect that such a study to be closely related to how flow between two regions can be
bounded. Improved solution methods for the network inhibition problem, especially
when additional constraints that better bound the flow between two regions, is an-
other interesting problem to study. Both heuristics and exact algorithms would be
interesting in this context.
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